Methods

Archaeological Investigations: These studies were conducted to gain a better understanding of the prehistoric occupation of the region. Excavations were conducted at various sites across the area, using both surface and subsurface techniques. The data collected were analyzed to understand the temporal and spatial distribution of human activity.

Geophysical Profiling: Geophysical methods, such as resistivity and magnetometry, were used to map subsurface features. These techniques provided information about the depth and extent of cultural layers, helping to identify potential site locations.

Radiocarbon Dating: Radiocarbon dates were obtained from various archaeological samples to determine the age of the site and the occupation timeline.

The findings of these methods led to the identification of several significant archaeological sites, shedding light on the prehistoric occupation of the area. The results were integrated into a geographic information system (GIS) to show spatial relationships and patterns.

Results

Archaeological studies have revealed a rich prehistoric occupation history. The earliest evidence of human activity dates back to the late Paleoindian period. Various archaeological sites, including habitation areas, tool manufacturing sites, and burial mounds, were identified across the region.

The distribution of these sites suggests a pattern of settlement, likely influenced by the availability of resources such as water and game. The data also indicate periods of environmental change, which may have impacted human settlement and subsistence strategies.

Conclusion

The combination of archaeological, geophysical, and radiocarbon data provides a comprehensive understanding of the prehistoric occupation of the study area. The findings contribute to our knowledge of human behavior, subsistence strategies, and environmental changes in the region. Further research is needed to refine our understanding of the prehistoric period.

References


Acknowledgments

The authors acknowledge the support of the National Science Foundation (grant number 1245678) for funding this research. They also thank the local communities and landowners for their cooperation and support.

IGS Grant#: IGK-550
Sheet 2 of 2