Three-Dimensional Geological Mapping for Groundwater Applications:
Workshop Wrap-up

Denver, Colorado
26 October 2002
The Challenge

- With optimal benefit/cost, to construct an appropriate 3D geological model that will facilitate analyses for immediate and/or future needs
Determine appropriate format & platform
- Cross-sections
- Structure contours & isopachs
- Surfaces
- Solids
Determine desired level of detail
Determine achievable level of detail
Generalize existing models
- Drilling logged by a geologist
 - Core
 - Borehole geophysics
Geophysical surveys
- Seismic
- Radar
- Gravity
- Resistivity
- Hydrogeological tests
Water wells & engineering drilling
- location errors; centroids
- reliability assessment
- varying detail
- clustering
- nonstandard terminology
- audit precision
- position drill holes vertically
- hang the model
- insights into geology
Bathymetry
- key hydrogeological features
- uppermost layer = water
- offshore geology
Offshore surveys
- extent of fine-grained sediments
- groundwater discharge
Digital geological maps
 - surficial & bedrock
 - new mapping
 - stacked polygons
 - outcrop & subcrop
 - fit
Build the model at maximum detail
- resolution permitted by the data
- genetic & historical models
- modeling method
 - Site selection, correlation - prediction - geostatistics, edge control, marker beds, quality assurance
Generalize as required by application
 - Lump units
- Quantify confidence level & priority level
 - Validation procedures
 - Priority for enhancement
- Iterate & set priorities for new info
Version & documentation
Applications

- Vulnerability, resources
- Interaction, geos & hydrogeos
- Assign hydrogeological properties; deal with pinchouts
- Add water levels & chemistry
- Model & iterate
- Legacy
 - official geological model
 - enhanced databases